商铺名称:苏州瑶佐机电有限公司
联系人:张晨(先生)
联系手机:
固定电话:
企业邮箱:207290279@qq.com
联系地址:苏州市相城区元和街道善济路158号
邮编:330000
联系我时,请说是在勒克斯之家上看到的,谢谢!
日本大金KSO-G02-3CP-30电磁阀,DAIKIN电磁阀,DAIKIN大金中文名称大金工业株式会社,DAIKIN大金成立于1924年10越25日,创业以来已拥有80多年的历史。期间虽然经历了石油危机计泡沫经济时代,但DAIKIN大金却凭借领先于世界的技术及优秀的经营理念,依然以雄伟的身姿活跃在当今世界舞台,并不断发展壮大。从日本到欧美,亚洲,DAIKIN大金一步步成为一流的全球化企业,并不断的致力于研发更高效、更节能、更环保的新技术,为液压机械等多种领域做出巨大的贡献。KSO-G02-4CA-30、KSO-G02-4CB-30、KSO-G02-4CC-30、KSO-G02-4CD-30、KSO-G02-4CN-30、KSO-G02-4CP-30、KSO-G02-44CA-30、KSO-G02-44CB-30、KSO-G02-44CC-30、KSO-G02-44CD-30、KSO-G02-44CN-30、KSO-G02-44CP-30、,KSO-G02-5CA-30、KSO-G02-5CB-30、KSO-G02-5CC-30、KSO-G02-5CD-30、KSO-G02-5CN-30、,KSO-G02-5CP-30、KSO-G02-66CA-30、KSO-G02-66CB-30、KSO-G02-66CC-30、KSO-G02-66CD-30、,KSO-G02-66CN-30、KSO-G02-66CP-30、KSO-G02-7CA-30、KSO-G02-7CB-30、KSO-G02-7CC-30、,KSO-G02-7CD-30、KSO-G02-7CN-30、KSO-G02-7CP-30、KSO-G02-8CA-30、KSO-G02-8CB-30、,KSO-G02-8CC-30、KSO-G02-8CD-30、KSO-G02-8CN-30、KSO-G02-8CP-30、KSO-G02-9CA-30、,KSO-G02-9CB-30、KSO-G02-9CC-30、KSO-G02-9CD-30、KSO-G02-9CN-30、KSO-G02-9CP-30、,KSO-G02-51CA-30、KSO-G02-51CB-30、KSO-G02-51CC-30、KSO-G02-51CD-30、KSO-G02-51CN-30、,KSO-G02-51CP-30、KSO-G02-81CA-30、KSO-G02-81CB-30、KSO-G02-81CC-30、KSO-G02-81CD-30、,KSO-G02-81CN-30、KSO-G02-81CP-30、KSO-G02-91CA-30、KSO-G02-91CB-30、KSO-G02-91CC-30、,KSO-G02-91CD-30、KSO-G02-91CN-30、KSO-G02-91CP-30、,,KSO-G02-2NA-30、KSO-G02-2NB-30主要领域有:空调和冰箱、液压技术、防务系统、化工、计算计系统等。日本大金其生产的产品有:变频液压系
日本大金KSO-G02-3CP-30电磁阀,DAIKIN电磁阀,统、液压站、柱塞泵、马达、法兰、压力控制阀、流量控制阀、方向控制阀、模块叠加阀、插装阀、比例阀及伺服阀等。
回信器信号灯绿灯亮时阀门处在敞开方位,而红灯亮时阀门处在封闭方位阀门开闭灵活,无卡阻,关闭严密,内外无漏水。适用范围和主要用途:沥青保温泵的材质按工作温度分为两种,I类材质HT200适用于输送到200℃以下,II类材质Q235适用于输送350℃以下的无腐蚀性,不含固体颗粒的重油/沥青等各类在常温下有凝固怀以及高寒地区室外安装和工艺过程中要求保温的场合。升降机液压站的功率损失一方面会造成能量上的损失,使系统的总效率下降,另一方面,损失掉的这一部分能量将会转变成热能,使液压油的温度升高,油液变质,导致液压设备出现故障。因此,设计液压系统时,在满足使用要求的前提下,还应充分考虑降低系统的功率损失。 复合压力控制D
KSO-G02-5CD-30、KSO-G02-5CN-30、,KSO-G02-5CP-30、KSO-G02-66CA-30、KSO-G02-66CB-30、KSO-G02-66CC-30、KSO-G02-66CD-30、,KSO-G02-66CN-30、KSO-G02-66CP-30、KSO-G02-7CA-30、KSO-G02-7CB-30、KSO-G02-7CC-30、,KSO-G02-7CD-30、KSO-G02-7CN-30、KSO-G02-7CP-30、KSO-G02-8CA-30、KSO-G02-8CB-30、,KSO-G02-8CC-30、KSO-G02-8CD-30、KSO-G02-8CN-30、KSO-G02-8CP-30、KSO-G02-9CA-30、,KSO-G02-9CB-30、KSO-G02-9CC-30、KSO-G02-9CD-30、KSO-G02-9CN-30、KSO-G02-9CP-30、,
日本大金KSO-G02-3CP-30电磁阀,DAIKIN电磁阀,KSO-G02-51CA-30、KSO-G02-51CB-30、KSO-G02-51CC-30、KSO-G02-51CD-30、KSO-G02-51CN-30、,KSO-G02-51CP-30、KSO-G02-81CA-30、KSO-G02-81CB-30、KSO-G02-81CC-30、KSO-G02-81CD-30、,KSO-G02-81CN-30、KSO-G02-81CP-30、KSO-G02-91CA-30、KSO-G02-91CB-30、KSO-G02-91CC-30、,KSO-G02-91CD-30、KSO-G02-91CN-30、KSO-G02-91CP-30、,,KSO-G02-2NA-30、KSO-G02-2NB-30、KSO-G02-2NC-30、KSO-G02-2ND-30、KSO-G02-2NN-30、,KSO-G02-2NP-30、KSO-G02-20NA-30、KSO-G02-20NB-30、KSO-G02-20NC-30、KSO-G02-20ND-30,KSO-G02-20NN-30、KSO-G02-20NP-30、KSO-G02-2N-2TA-30、KSO-G02-2N-2TB-30、KSO-G02-2N-2TC-30、KSO-G02-2N-2TD-30、KSO-G02-2N-2TN-30、KSO-G02-2N-2TP-30、KSO-G02-2N-H2A-30、KSO-G02-2N-H2B-30、KSO-G02-2N-H2C-30、KSO-G02-2N-H2D-30、KSO-G02-2N-H2N-30、KSO-G02-2N-H2P-30、,,KSO-G02-2DA-30、KSO-G02-2DB-30、KSO-G02-2DC-30、KSO-G02-2DD-30、KSO-G02-2DN-30、,KSO-G02-2DP-30、KSO-G02-20DA-30、KSO-G02-20DB-30、KSO-G02-20DC-30、KSO-G02-20DD-30、,KSO-G02-20DN-30、KSO-G02-20DP-30、KSO-G02-2A-H2A-30、KSO-G02-2A-H2B-30、KSO-G02-2A-H2C-30、KSO-G02-2A-H2D-30、KSO-G02-2A-H2N-30、KSO-G02-2A-H2P-30、KSO-G02-3A-H3A-30、KSO-G02-3A-H3B-30、KSO-G02-3A-H3C-30、KSO-G02-3A-H3D-30、KSO-G02-3A-H3N-30、KSO-G02-3A-H3P-30、KSO-G02-81A-H4A-30
日本大金KSO-G02-3CP-30电磁阀,DAIKIN电磁阀,图1 硬件电路设计总体框图本文选用AT89C51作为核心芯片,这样不仅提高了系统的总体性能,而且降低了成本。本设计选用的传感器型号为DS18B20温度传感器。补偿器型号为AD590JH温度转换器。图2为数据采集及A/D转换模块。控制输出模块主要包括D/A转换和光电耦合模块,主要由芯片DAC0832、运算放大器和光耦实现,具体设计如图10所示。另外还进行了键盘输入模块和报警显示模块的设计,由于篇幅不再赘述。电锅炉图2 数据采集及A/D转换模块温度控制图3 控制输出模块
.算法的实现由于纯PID控制对有较大的超量和过渡时间,为了解决这一难点,本系统将模糊控制算法和PID的实用性相结合,研究出一种参数模糊自整定PID控制系统,以此减少超调量,调节时间和系统的振荡性,提高温度调节系统的整体控制性能[10]。
参数模糊自整定PID控制系统能在控制过程中对不确定的条件、参数、延迟和干扰等因素进行检测分析,这种控制方法不仅保持了常规PID控制系统的原理简单、使用方便、鲁棒性强等特点,而且具有更大的灵活性、适用性、精确性等特性。典型的模糊自整定PID控制系统的结构如图4所示。
模糊控制在智能温度控制系统中的应用图4 参数自整定模糊PID控制器设计图该模糊控制器输入输出的隶属函数均选灵敏度高及在论域范围内均匀分布的等距离三角函数。隶属函数曲线如图5、图6所示。糊PID控制 模糊PID控制
图5 偏差E及偏差变化率EC的隶属函数图 图6 Δkp、Δki、Δkd隶属函数图模糊决策一般采用Mamdani's(min-max)决策法。反模糊化,也就是模糊量的精确化,本设计采用重心法计算公式如(1)式所示:模糊控制在智能温度控制系统中的应用 (1)重心法比较全面的反应了各个控制信息,它的缺点是运算量较大,不过在实际的控制过程中,输出论域的元素一般不会太多。再次,清晰化方法选择重心法。此设计的模糊控制输入输出曲面如图7所示:温度控制 仿真
( a)(b)模糊控制在智能温度控制系统中的应用(c)7 模糊PID控制器输入输出曲面图4.仿真
在MATLAB命令窗口中键入“Simulink”,在Simulink环境下,建立模糊PID的仿真模型如图8所示,模糊PID的仿真结果曲线如图9所示。电锅炉图8 模糊PID控制器的仿真模块仿真图9 模糊PID控制系统仿真图根据仿真结果可知,采用模糊控制策略整定PID参数相对于普通PID控制策略,其系统的鲁棒性增强,响应时间大大减少,超调量也得到了一定的改善,提高了系统的总体性能[6]。5.总结
本文以电锅炉的温度作为研究对象,采用了较新的控制方法——模糊PID控制。该控制系统选用单片机AT89C51作为控制芯片。完成数据采集、参数整定、LED显示、键盘输入、报警等功能,由理论向实际迈出了一步,具有一定的理论和实用价值。