当前位置:首页 >> 产品展示 >> 管件 >> 管道辅料 >>旋转补偿器DN500价格
旋转补偿器DN500价格放大图片

产品价格:102   元(人民币)
上架日期:2017年1月9日
产地:河北省盐山
发货地:河北省盐山  (发货期:当天内发货)
供应数量:不限
最少起订:1套
浏览量:9
  暂无相关下载
其他资料下载:

         
河北润宏管道有限公司

点击这里给我发消息
  详细说明  
品牌:Rh产地:河北省盐山
价格:102人民币/套规格:Dn500

简要说明:Rh牌的松原自维护式无推力旋转补偿器DN500热油用厂家报价产品:估价:102,规格:Dn500,产品系列编号:手机:151-3276-1902

详细介绍:

  

补偿器支架受力原则:

轴向补偿器受力支架分为主固定支架、次固定支架、导向支架。
固定支架推力计算:
主固定支架水平推力由三种力的合力组成:
由于工作压力引起的内压推力F=PA:
其中P为工作压力,A有效截面积。内压推力由有效截面积及工作压力所决定,内压推力与工作压力、有效截面积成正比,一般来说,补偿器的内压推力都较大。
补偿器刚度产生的弹性力PA=KfL
其中为K补偿器刚度,L为管道实际伸长量,f为系数,预拉伸时为0.5,否则为1。
固定支架间滑动摩擦反力qμl
其中q为管道重量,μ为摩擦系数,l为管道自由端至固定端的距离。
主固定支架水平推力=内压推力+摩擦反力+弹性力
假如不同心还将计入因偏心造成对固定支架的弯距和侧向推力。主固定支架水平推力巨大,大管径可达上百吨,土建布置困难,需进行全面结构核算,属于重载支架。
次固定支架,受力与主固定支架相同,但内压推力平衡抵销,总推力较小,与主固定支架不是一个数量级,属于中间减载支架。
计算固定点推力时,应分别计算固定点每侧的受力,然后再合成。固定点两侧的方向相同时,采用两个力的矢量和作为固定点推力。两个力方向相反时,用绝对值大的力减去绝对值小的力的0.7倍,作为固定点的推力。
导向支架是控制沿管道或补偿器运动方向运动,确保管段膨胀作用于补偿器上并保证管道不发生失稳.
一般补偿器厂家样本不仅对产品规格“结构“参数情况做具体说明而且有应用实例推力计算“通用安装要求,较为祥尽.可以做为设计依据.
固定支架微小位移中对补偿器的影响:
不少管系甚至直埋管系均布置成固定支架有微小热位移的可动设计,在自然补偿管系中,整个管系都参与补偿变形,管道变形较为均匀,这种布置方式使管系整体性好,可靠性高,并且可以减少应力集中。在补偿器管系中情况则大为不同,假如处理不当对补偿器的安全影响很大。一种微小热位移的可动设计形式是管道与支架连接处不是焊死而是紧靠限位挡板在根部焊接固定。相国标图集403.022-02挡板式固定支架对于自然补偿管系是否焊接现在争论较大,另外蒸汽直埋管道现多采用钢套钢内固定方式,这种结构方式是为减少热桥的传热,固定环在内外环板之间增加橡胶板等隔热材料,内外环板通常不焊接,可以自由活动,当固定支架受较大力或水击振动会产生一定量位移,有时还发生纵向微量位移,对补偿器产生扭矩作用,这种位移对补偿器有一定影响。


旋转补偿器描述:

旋转补偿器简介:免维护旋转补、封座外套、柔性石墨填料、螺母螺栓N个压簧组合、填料压盖及弹簧压紧法兰构成:所述填料压紧法兰与压紧上法兰之间设有压簧,压紧法兰纵截面为U型的槽圈。U型槽圈中以及内导管右端面两个定环之间设有与变径管相配合运动的滚珠式滚动环。


免维护旋转补偿器工作原理:

免维护旋转补偿器和普通旋转补偿器产品使用都是靠填料腔内的柔性填料进行密封。旋转补偿器使用过程中每旋转一次填料就会磨损一点,当磨损量达到一定值时,产品就会出现泄漏。旋转补偿器必须将热网管线停气,把填料压紧法兰卸下,加入一定量的填料,再压紧法兰,恢复使用;而免维护旋转补偿器因在填料压紧法兰上方增加了一组弹簧,当填料出现微量磨损时,依靠压紧弹簧的张力给予补偿,从而延长产品发生泄漏时间(泄漏时间延后3-5年)。当磨损量超过弹簧张力补偿量时,只需扳紧弹簧压紧法兰上方的螺帽即可,不需要停气修复,运行无次数限制,不易产生泄漏,从而大大提高供气单位和用气单位的社会经济效益。旋转补偿器在4.0Mpa的压力下补偿5000次不产生泄漏,密封效果优越。

管道水击对补偿器有什么影响;

水击对补偿器影响极大。.蒸汽管道无论是地上架空还是地下地沟或直埋管道,都存在着水击问题,水击产生的能量释放不出来,最终作用在管道保温结构、支架、补偿器及阀门上。弯头处或管道出地处,发生水击情况较多,但因管道是刚性的,抗水击能力强,补偿器波纹是柔性体,无法抵御水击瞬间剧增压力波冲击振动,造成破坏从破坏的部位来看,一是波纹,二是导流套,而最薄弱的环节是补偿器的波纹,水击的结果造成补偿器变形甚至破裂,导流套倒个或撕裂,严重危害管网安全。防止水击的措施:除合理根据热负荷确定相应管径,有针对性设置好疏水点,有效及时进行疏水外,在补偿器的设计布置方式上,也应加以改进。建议将补偿器远离弯头及上翻处固定支架,改在靠近另一侧固定支架,这样即使管道中存在少量积水,但作用位置远离补偿器,可大大减少水击的对补偿器造成的破坏。另外选用外压补偿器,改进导流套形式也能起到一定的防范水击作用。

现场变更对补偿器的影响:
热力管网有时虽然原始设计很好,但由于进行施工后经常碰到障碍,现场实际情况与设计往往出入很大,不得不做大量的实际设计变更,对自然补偿管道只要处理适当不会产生很大影响,但对轴向补偿器管路影响非常大,不少施工单位对此没有充分熟悉,某些固定支架在管道改变走向后,原来不承受压力推力改为承受压力推力或者产生较大弯距,支架受力结构形式发生重大变化,处置不当很轻易推坏固定支架,导致事故发生。由于施工单位专业化程度普遍较低,主要靠设计单位对施工的热网布置整体性进行控制,在管线变更较大情况下,应非凡注重管道的受力形式是否符合补偿器布置基本原则,通过合理分段,保证管线呈直线,控制拐点产生,减少作用于固定支架与导向支架的弯矩及侧向推力,进而保证管系安全合理。这对于设计人员最为重要,除了不断积累经验外,一定要形成明确设计思路,才能提高设计补偿器管系的水平。


该公司其他信息
最新供求信息 企业产品推荐

暂无产品
  在线询盘/留言 请仔细填写准确及时的联系到你!  
您的姓名:
* 预计需求数量: *
联系手机:
*  移动电话或传真:
电子邮件:
* 所在单位:
咨询内容:
*
           您要求厂家给您提供:
  • 规格,型号
  • 价格及付款条件
  • 产品目录
  • 最低订货量
  • 运送资料
  • 提供样本
  • 库存情况
  • 包装材料