详细介绍:
兴崛供水设备有限公司,国内自主研发生产的实力厂家!因为专注所以专业!多年的研发生产经验,专业工程师提供技术方案!
全国咨询热线:400-0030-929
兴崛使命: 为中华兴盛创一流企业 为高楼崛起造一流产品
为持续发展扬一流品德 为合作双赢重一流信誉
兴崛精神:诚信 勤奋 创新 激情
兴崛作风:雷厉风行 保障结果
企业理念:以科技为动力 以质量求生存
服务定位:超越客户期望 领先行业水平
兴崛愿景:打造可信赖一站式供水服务品牌
变频恒压供水系统节能原理
供水系统的基本特性和工作点扬程特性是以供水系统管路中的阀门开度不 变为前提,表明水泵在某一转速下扬程H与流量Q之间的关系曲线f(Q),如图1-1 所示。
图1-1供水系统的基本特征 由图可以看出,流量Q越大,扬程H越小。由于在阀门开度和水泵转速都不变的情况下,流量的大小主要取决于用户的用水情况,因此,扬程特性所反映的是扬程H与用水流量Q(u)间的关系。而管阻特性是以水泵的转速不变为前提,表明阀门在某一开度下,扬程H与流量Q之间的关系H J (Qu )。管阻特性反映了水泵的能量用来克服泵系统的水位及压力差、液体在管道中流动阻力的变化规律。由图可知,在同一阀门开度下,扬程H越大,流量Q也越大。由于阀门开度的改变,实际上是改变了在某一扬程下,供水系统向用户的供水能力。因此,管阻特性所反映的是扬程与供水流量Qc之间的关系H f (Qc )。扬程特性曲线和管阻特性曲线的交点,称为供水系统的工作点,如图中A点。在这一点,用户的用水流量Qu和供水系统的供水流量Qc处于平衡状态,供水系统既满足了扬程特性,也符合了管阻特性,系统稳定运行。图1-1供水系统的基本特征供水系统的基本特征
变频恒压供水系统的供水部分主要由水泵、电动机、管道和阀门等构成。通 常由异步电动机驱动水泵旋转来供水,并且把电机和水泵做成一体,通过变频器 调节异步电机的转速,从而改变水泵的出水流量而实现恒压供水的。因此,供水 系统变频的实质是异步电动机的变频调速。异步电动机的变频调速是通过改变定 子供电频率来改变同步转速而实现调速的。
变频恒压供水控制方式的选择
目前国内变频恒压供水设备电控柜的控制方式有: 1.逻辑电子电路控制方式 这类控制电路难以实现水泵机组全部软启动、全流量变频调节,往往采用一台泵固定于变频状态,其余泵均为工频状态的方式。因此,控制精度较低、水泵切换时水压波动大、调试较麻烦、工频泵起动时有冲击、抗干扰能力较弱,但其成本较低。 2.单片微机电路控制方式 这类控制电路优于逻辑电路,但在应付不同管网、不同供水情况时,调试较麻烦;追加功能时往往要对电路进行修改,不灵活也不方便。电路的可靠性和抗干扰能力都不太好。 3.带PID回路调节器或可编程序控制器(PLC)的控制方式 该方式变频器的作用是为电机提供可变频率的电源。实现电机的无级调速,从而使管网水压连续变化。传感器的任务是检测管网水压,压力设定单元为系统提供满足用户
需要的水压期望值。压力设定信号和压力反馈信号在输入可编程控后,经可编程控制器
- 3 - 内部PID控制程序的计算,输出给变频器一个转速控制信号。还有一种办法是将压力设定信号和压力反馈信号送入PID回路调节器,由PID回路调节器在调节器内部进行运算后,输入给变频器一个转速调节信号。 由于变频器的转速控制信号是由可编程控制器或PID回路调节器给出的,所以对可编程控制器来讲。既要有模拟量输入接口,又要有模拟量输出接口。由于带模拟量输入,输出接口的可编程控制器价格很高,这无形中就增加了供水设备的成本。若采用带有模拟量输入,数字量输出的可编程控制器,则要在可编程控制器的数字量输出口端另接一块PWM调制板,将可编程控制器输出的数字量信号转变为模拟量。这样,可编程控制器的成本没有降低,还增加了连线和附加设备,降低了整套设备的可靠性。如果采用一个开关量输入,输出的可编程控制器和一个PID回路调节器,其成本也和带模拟量输入,输出的可编程控制器差不多。所以,在变频调速恒压给水控制设备中,PID控制信号的产生和输出就成为降低给水设备成本的一个关键环节。 4.新型变频调速供水设备 针对传统的变频调速供水设备的不足之处,国内外不少生产厂家近年来纷纷推出了一系列新型产品,如华为的TD2100;施耐德公司的Altivar58泵切换卡;SANKEN的SAMCO— I系列;ABB公司的ACS600、ACS400系列产品;富士公司的GIIS/PIIS系列产品;等等。这些产品将PID调节器以及简易可编程控制器的功能都综合进变频器内,形成了带有各种应用的新型变频器。由于PID运算在变频器内部,这就省去了对可编程控制器存贮容量的要求和对PID算法的编程,而且PID参数的在线调试非常容易,这不仅降低了生产成本,而且大大提高了生产效率。由于变频器内部自带的PID调节器采用了优化算法,所以使水压的调节十分平滑,稳定。同时,为了保证水压反馈信号值的准确、不失值,可对该信号设置滤波时间常数,同时还可对反馈信号进行换算,使系统的调试非常简单、方便
变频恒压供水系统控制流程
变频恒压供水系统控制流程如下:
(l) 系统通电,按照接收到有效的自控系统启动信号后,首先启动变频器拖动变频泵M1工作,根据压力变送器测得的用户管网实际压力和设定压力的偏差调节变频器的输出频率,控制Ml的转速,当输出压力达到设定值,其供水量与用水量相平衡时,转速才稳定到某一定值,这期间Ml工作在调速运行状态。
(2) 当用水量增加水压减小时,压力变送器反馈的水压信号减小,偏差变大,PLC的输出信号变大,变频器的输出频率变大,所以水泵的转速增大,供水量增大,最终水泵的转速达到另一个新的稳定值。反之,当用水量减少水压增加时,通过压力闭环,减小水泵的转速到另一个新的稳定值。
(3) 当用水量继续增加,变频器的输出频率达到上限频率50Hz时,若此时用户管网的实际压力还未达到设定压力,并且满足增加水泵的条件(在下节有详细阐述)时,在变频循环式的控制方式下,系统将在PLC的控制下自动投入水泵M2(变速运行),同时变频泵M1做工频运行,系统恢复对水压的闭环调节,直到水压达到设定值为止。如果用水量继续增加,满足增加水泵的条件,将继续发生如上转换,将另一台工频泵M3投入运行,变频器输出频率达到上限频率50Hz时,压力仍未达到设定值时,控制系统就会发出水压超限报警。
(4) 当用水量下降水压升高,变频器的输出频率降至下限频率,用户管网的实际水压仍高于设定压力值,并且满足减少水泵的条件时,系统将工频泵M2关掉,恢复对水压的闭环调节,使压力重新达到设定值。当用水量继续下降,并且满足减少水泵的条件时,将继续发生如上转换,将另一台工频泵M3关掉。
|