详细介绍: K7M-DR10UE可编程控制器品质保证项目 规格 备注 标准型 K7M-DR(T)20U K7M-DR(T)30U K7M-DR(T)40U K7M-DR(T)60U 经济型 K7M-DR10UE K7M-DR14UE K7M-DR20UE K7M-DR30UE 程序控制方式 对用户程序循环扫描,时间中断,外部输入点中断 I/O控制方式 间接模式(程序的刷新),通过程序设定直接执行 编程语言 语句表,梯形图 指令数量 基本指令:30,应用指令:227经济型应用指令为:269) 执行速度 0.1US/步(经济型的为0.4US/步) 程序容量 10K步(经济型的为2K) I/O点数 20(经济型10) 30(经济型14) 40(经济型20) 60(经济型30) 内部数据区域 P P000-P63F I/O继电器 M M000-M191F 辅助继电器 K K000-K31F 掉电保持继电器 L L000-L63F 通讯连接继电器 F F000-F63F 专用继电器 T 100msec:T000-T191(192points)10msec:T192-T250(59points)1msec:T251-T255(5points) 时间继电器 C C000-C255 计数器 S S00.00-S99.99 步进继电器 D D0000-D4999 数据区域 操作方式 运行,停止,暂停,调试 自诊断功能 周期错误扫描,内存,I/O点和电源 数据备份方式 掉电保持区域备份 最大扩展数量 最大扩展模块为:3(经济型为:2)(外部存储卡或RTC模块使最大扩展模块达到4个)经济型为:3
项目 规格 K7M-DR(T)20U K7M-DR(T)30U K7M-DR(T)40U K7M-DR(T)60U 备注 内置功能 PID控制功能 通过参数设定控制,Relay和PRC自设定PWM输出方式,手动输出,调整PID扫描时间Anti-windup,SV-Ramp,Delta MV,位置和速度控制 经济型无此功能 CnetI/F功能 支持LG专用通讯协议支持MODBUS通讯协议 支持用户自定义协议支持无协议通讯 RS-232C-1个口RS-485-1个口 K7M-DR20UEK7M-DR30UE仅有RS232功能K7M-DR10UEK7M-DR10UE仅有RS485功能 高速计数功能 速度 1相:100khz-2通道,20khz-2通道2相:50Khz-1通道,10khz-1通道 经济型无此功能 计数方式 4种不同的计数方式-1相计数方式-2相CW/CCW方式-2相脉冲+方向方式-2相乘法方式(MUL4) 附加功能 内部/外部预设锁存计数功能RPM功能比较输出功能 位置控制 运行方式 控制轴的数目:2轴控制方式:点对点,速度控制控制单位:脉冲位置数据:20位/轴(运行的步数,1-20) 仅适用于DRT经济型无此功能 位置 位置方式:绝对/相位操作方式:单向/循环运行方式:END/keep/Continuous地址范围:-2147,483,648-2147,483,647速度范围:最大100Kpps(设定范围5-100,000)加减速方式:梯形方式 原点返回 当近似原点关,原点检测当近似原点开,减速后原点检测通过近似原点,原点检测 点动 设定范围:5-100,000(高/低速) 脉冲捕捉 最小脉冲宽度:10us(2点)和50us(6点) 外部中断 10us(2点)和50us(6点) 输入滤波 0-1000ms(可调整) 重量(g) 520 540 660 850五、桥式接线 当只有两台变压器和两条线路时,可以采用桥式接线,桥式接线按照 连接桥的位置可分为内桥接线和外桥接线,如图2-6 所示。内桥接线的连接 桥设置在变压器侧,外桥接线的连接桥设置在线路侧。连接桥上亦装设断路 器,正常运行时此断路器是接通的。这种接线中,四条回路只用了三台断路 器,所用的断路器数量是较少的。 图2-6 桥式接线 (a)内桥接线 ; (b)外桥接线 1. 内桥接线 内挢接线如图 2-6(a)所示。其特点是:两台断路器QF1 和QF2 接在 引出线上。因此引出线的切除和投入是比较方便的。当线路发生短路故障时, 仅故障线路的断路器断开,其它三条回路仍可继续工作。但是当变压器(如 1T)故障时,与变压器1T 连接的两台断路器QF1 和QF3 都将断开,从而 影响了非故障线路WL—1 的工作。此外,这种接线当切除和投入变压器时, 操作也比较复杂。例如切除变压器1T 时,必须首先断开断路器QF1、QF3 和变压器低压侧的断路器(图中未画出),再断开隔离开关QS1,然后接通 QF1 和QF3,使出线WL—1 恢复工作。所以内桥接线一般适用于故障较多 的长线路和变压器不需要经常切除的场合。 2. 外桥接线. 外桥接线如图2-6(b)所示,其特点与内桥接线相反。当变压器发生 故障或运行中需要切换时,只要断开本回路即可,不影响其它回路的工作。 但是,当线路 (例如出线WL—1) 发生故障时,断路器QF1 和QF3 都将断 开,因而变压器1T 也将被切除。为了恢复1T 的正常运行,必须在断开QS2 后,再接通QF1 和QF3。因此,外桥接线适用于线路较短和变压器按经济 运行需要经常切换的情况。此外,当电力系统有穿越性功率经过发电厂和变 电所时,也应采用外桥接线,这时穿越功率仅经过连接桥上的断路器。否则, 若采用内桥接线,穿越功率要经过三台断路器,其中任一台断路器发生故障 或检修时,将影响穿越功率的传送。又如两条引出线接入环形电网时,也应 采用外桥接线,使环形电网断开的机会减少。 桥式接线具有工作可靠、灵活、使用电器少、装置简单清晰、建造费 用低和易于发展成单母线分段接线等优点。 六、单元接线 电力装置中各元件串联连接,其间没有任何横向联系的接线,称为单 元接线。单元接线有发电机一变压器单元和变压器一线路单元接线。这里只 对前者加以说明。 发电机一变压器单元接线如图 2-7 所示。图2-7(a)为一台发电机与一台 双绕组变压器联接成为一个单元,电能通过高压断路器送入35 千伏及以上 电网。这种接线中,发电机和变压器不单独工作,故变压器和电 机容量基本相同,且两者之间不装设 断路器,为了便于对发电机单独进行 试验,可装一组隔离开关。 为了减少变压器的台数和高压侧 断路器数量,可将两台发电机和一台 变压器相连接,称为扩大单元接线, 当机组台数较多时,可采用这种接线 ,对减少占地面积和配电装置的布置 较有利。但在运行上的灵活性较差, 在检修变压器时时,需停两台机,产 图2-7 发电机变压器单 元接线 生的影响较大。 (a)一般单元接线 (b)扩大 单元接线 七、一个半断路器接线 两个元件引线用三台断路器接往两组母线组成一个半断路器接线,如图 2-8 所示。每 一回路经一台断路器接至母线,两回路间设一联络断路器,形成一串,又称 二分之三接线。 运行时,两组母线和全部断路器都投入工作,形成多环状供电,具有较高的 供电可靠性和 运行灵活性。任一母线故障或检修,均不致停电;除联络断路器故障时与其 相连的两回线 路短时停电外,其他任何断路器故障或检修都不会中断供电;甚至两组母线 同时故障(或 一组检修时另一组故障)的极端情况下,功率仍能继续输送。此种接线运行 方便,操作简 单,隔离开关只在检修时作为隔离电器。为进—步提高接线可靠性,并防止 联络断路器故 障可能同时切除两组电源线路,可尽量把同名元件布置在不同串上;同名元 件分别接入不同母线上,如图2-8 中右边—串。即将变压器和出线同串交叉 配置,此时,将增加配电装置间隔。 一个半断路器接线,特别适宜于220KV 以上的超高压、大容量系统中。 但使用设备较多,特别是断路器和电流互感器,投资较大,二次控制接线和 继电保护都比较复杂。 八、角形接线 当母线闭合成环形,并按回路数利用断路器分段,即构成角形接线。图 2-9 为四角形 接线。角形接线中,断路器数等于回路数,且每个回路都与两台断路器相连 接,检修任意一台断路器都不致中断供电,隔离开关只用于检修,从而具有 较高的可靠性和灵活性,运行操作方便。但在检修断路器 (如QF1) 时,将 开环运行。此时,如恰好发生断路器事故跳闸 (如QF2),则造成系统解列 或分成两半运行,甚至会造成停电事故。注意应将电源和馈线回路相互交替 错开布置或按对角原则连接,将会提高供电可靠性。 图 2-8 一个半断路器接线 图2-9 角形接线 K7M-DR10UE可编程控制器品质保证五、桥式接线 当只有两台变压器和两条线路时,可以采用桥式接线,桥式接线按照 连接桥的位置可分为内桥接线和外桥接线,如图2-6 所示。内桥接线的连接 桥设置在变压器侧,外桥接线的连接桥设置在线路侧。连接桥上亦装设断路 器,正常运行时此断路器是接通的。这种接线中,四条回路只用了三台断路 器,所用的断路器数量是较少的。 图2-6 桥式接线 (a)内桥接线 ; (b)外桥接线 1. 内桥接线 内挢接线如图 2-6(a)所示。其特点是:两台断路器QF1 和QF2 接在 引出线上。因此引出线的切除和投入是比较方便的。当线路发生短路故障时, 仅故障线路的断路器断开,其它三条回路仍可继续工作。但是当变压器(如 1T)故障时,与变压器1T 连接的两台断路器QF1 和QF3 都将断开,从而 影响了非故障线路WL—1 的工作。此外,这种接线当切除和投入变压器时, 操作也比较复杂。例如切除变压器1T 时,必须首先断开断路器QF1、QF3 和变压器低压侧的断路器(图中未画出),再断开隔离开关QS1,然后接通 QF1 和QF3,使出线WL—1 恢复工作。所以内桥接线一般适用于故障较多 的长线路和变压器不需要经常切除的场合。 2. 外桥接线. 外桥接线如图2-6(b)所示,其特点与内桥接线相反。当变压器发生 故障或运行中需要切换时,只要断开本回路即可,不影响其它回路的工作。 但是,当线路 (例如出线WL—1) 发生故障时,断路器QF1 和QF3 都将断 开,因而变压器1T 也将被切除。为了恢复1T 的正常运行,必须在断开QS2 后,再接通QF1 和QF3。因此,外桥接线适用于线路较短和变压器按经济 运行需要经常切换的情况。此外,当电力系统有穿越性功率经过发电厂和变 电所时,也应采用外桥接线,这时穿越功率仅经过连接桥上的断路器。否则, 若采用内桥接线,穿越功率要经过三台断路器,其中任一台断路器发生故障 或检修时,将影响穿越功率的传送。又如两条引出线接入环形电网时,也应 采用外桥接线,使环形电网断开的机会减少。 桥式接线具有工作可靠、灵活、使用电器少、装置简单清晰、建造费 用低和易于发展成单母线分段接线等优点。 六、单元接线 电力装置中各元件串联连接,其间没有任何横向联系的接线,称为单 元接线。单元接线有发电机一变压器单元和变压器一线路单元接线。这里只 对前者加以说明。 发电机一变压器单元接线如图 2-7 所示。图2-7(a)为一台发电机与一台 双绕组变压器联接成为一个单元,电能通过高压断路器送入35 千伏及以上 电网。这种接线中,发电机和变压器不单独工作,故变压器和电 机容量基本相同,且两者之间不装设 断路器,为了便于对发电机单独进行 试验,可装一组隔离开关。 为了减少变压器的台数和高压侧 断路器数量,可将两台发电机和一台 变压器相连接,称为扩大单元接线, 当机组台数较多时,可采用这种接线 ,对减少占地面积和配电装置的布置 较有利。但在运行上的灵活性较差, 在检修变压器时时,需停两台机,产 图2-7 发电机变压器单 元接线 生的影响较大。 (a)一般单元接线 (b)扩大 单元接线 七、一个半断路器接线 两个元件引线用三台断路器接往两组母线组成一个半断路器接线,如图 2-8 所示。每 一回路经一台断路器接至母线,两回路间设一联络断路器,形成一串,又称 二分之三接线。 运行时,两组母线和全部断路器都投入工作,形成多环状供电,具有较高的 供电可靠性和 运行灵活性。任一母线故障或检修,均不致停电;除联络断路器故障时与其 相连的两回线 路短时停电外,其他任何断路器故障或检修都不会中断供电;甚至两组母线 同时故障(或 一组检修时另一组故障)的极端情况下,功率仍能继续输送。此种接线运行 方便,操作简 单,隔离开关只在检修时作为隔离电器。为进—步提高接线可靠性,并防止 联络断路器故 障可能同时切除两组电源线路,可尽量把同名元件布置在不同串上;同名元 件分别接入不同母线上,如图2-8 中右边—串。即将变压器和出线同串交叉 配置,此时,将增加配电装置间隔。 一个半断路器接线,特别适宜于220KV 以上的超高压、大容量系统中。 但使用设备较多,特别是断路器和电流互感器,投资较大,二次控制接线和 继电保护都比较复杂。 八、角形接线 当母线闭合成环形,并按回路数利用断路器分段,即构成角形接线。图 2-9 为四角形 接线。角形接线中,断路器数等于回路数,且每个回路都与两台断路器相连 接,检修任意一台断路器都不致中断供电,隔离开关只用于检修,从而具有 较高的可靠性和灵活性,运行操作方便。但在检修断路器 (如QF1) 时,将 开环运行。此时,如恰好发生断路器事故跳闸 (如QF2),则造成系统解列 或分成两半运行,甚至会造成停电事故。注意应将电源和馈线回路相互交替 错开布置或按对角原则连接,将会提高供电可靠性。 图 2-8 一个半断路器接线 图2-9 角形接线
|